Establishment of an in vitro cell line experimental system for the study of inhalational anesthetic mechanisms.
نویسندگان
چکیده
General anesthesia affects the expression of clock genes in various organs. Expression of Per2, a core component of the circadian clock, is markedly and reversibly suppressed by sevoflurane in the suprachiasmatic nucleus (SCN), and is considered to be a biochemical marker of anesthetic effect in the brain. The SCN contains various types of neurons, and this complexity makes it difficult to investigate the molecular mechanisms of anesthesia. Here, we established an in vitro experimental system using a cell line to investigate the mechanisms underlying anesthetic action. Development of the system comprised two steps: first, we developed a system for application of inhalational anesthetics and incubation; next, we established cultures of anesthetic-responsive cells expressing mPer2 promoter-dLuc. GT1-7 cells, derived from the mouse hypothalamus, responded to sevoflurane by reversibly decreasing mPer2-promoter-driven bioluminescence. Interestingly, the suppression of bioluminescence was found only in the serum-starved GT1-7 cells, which showed neuron-like morphology, but not in growing cells, suggesting that neuron-like characteristics are required for anesthetic effects in GT1-7 cells.
منابع مشابه
Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملIn-vitro Apoptotic Effects of Deferoxamine on the Glioblastoma Cell Line
Background: Research suggests the inhibitory effects of deferoxamine as an iron chelator on erythroleukemia cells. The present study was conducted to investigate the effects of deferoxamine on B92 cells as a model of glial cells carcinoma. Materials and Methods: The present experimental study treated 6×104 B92 cells with 0, 10, 50 and 100 µM of deferoxamine for 24 hours in the presence or absen...
متن کاملAnti-cancer effect of ICD-85(venom derived peptides) on MDA-MB231 cell line (in vitro) and experimental mice with breast cancer (in vivo)
Breast cancer has become common in developing and developed countries. Alarming increase in this disease as a leading cause of death in women is a concern of all. Despite the significant improvements in the management of breast cancer, the survival rate is not more than 20% - 25%. For this study, MDA-MB231 cell line was used and the effect of ICD-85 (biologically active peptides from venomous ...
متن کاملEstablishment of NS3 tumor cell line expressing Hepatitis C virus Non-structural Protein 3 as valuable tool for HCV challenging in mice
Introduction: Hepatitis C virus (HCV) is one of the major medical problems. Human and chimpanzees are the only specific hosts which are naturally susceptible to HCV infection. Mice and other common laboratory animals are resistant to the virus, hence HCV prophylactic and therapeutic researches are very difficult and challenging. HCV non-structural protein 3 (NS3) is one of the most attractive t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 620 شماره
صفحات -
تاریخ انتشار 2016